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Abstract
A two-sublattice ferrimagnet, with spin-s1 operators S1i at the sublattice A site and spin-s2

operators S2i at the sublattice B site, is considered. The magnon of the system, the transversal
fluctuation of the total magnetization, is a complicate mixture of the transversal fluctuations of
the sublattice A and B spins. As a result, the magnons’ fluctuations suppress in a different way
the magnetic orders of the A and B sublattices and one obtains two phases. At low temperature
(0, T ∗) the magnetic orders of the A and B spins contribute to the magnetization of the system,
while at high temperature (T ∗, TN), the magnetic order of the spins with a weaker
intra-sublattice exchange is suppressed by magnon fluctuations, and only the spins with
stronger intra-sublattice exchange have non-zero spontaneous magnetization. The T ∗ transition
is a transition between two spin-ordered phases in contrast to the transition from the
spin-ordered state to the disordered state (TN-transition). There is no additional symmetry
breaking, and the Goldstone boson has a ferromagnetic dispersion in both phases. A modified
spin-wave theory is developed to describe the two phases. All known Neel’s anomalous M(T )

curves are reproduced, in particular that with ‘compensation point’. The theoretical curves are
compared with experimental ones for sulfo-spinel MnCr2S4−x Sex and rare earth iron garnets.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The notions of ferrimagnetism and ferrimagnetic materials
were introduced by Neel [1] for materials in which
spontaneous magnetization is a resultant of two or more
components of non-parallel magnetic moments. Using a
molecular field theory he predicted the nature of magnetization
M versus temperature T . In Neel’s theory anomalous M(T )

curves arise due to the fact that each of the magnetic moments
approaches its own saturation value as a different function of
temperature. In general there is nothing to limit the number of
components. The simplest model consists of two alternating
sublattices of unequal and antiparallel moments, with three
molecular field coefficients utilized to describe the exchange
field effects: one ferromagnetic coefficient for each sublattice
and a third for the antiferromagnetic interaction. In many
cases, the experimental curves are used to determine the
molecular field coefficients. The most striking feature of the
anomalous M(T ) curves is the possibility of ‘compensation
point’, a temperature Tc at which the magnetic moments
of the two sublattices are equal and opposite, so that the
magnetization of the system is equal to zero M(Tc) = 0.
The phenomenon of ferrimagnetism has been the subject of

extensive experimental investigation since its discovery. The
phenomenological Neel’s standpoint has been confirmed by
many authors (see the review articles [2–6]).

The earliest application of spin waves to ferrimagnets
was made by Kaplan [7] to calculate the dispersion ωk for
the spinel-type ferrite. For small wavevector k he found
a quadratic relation ωk = Dk2, where D is a constant,
as for ferromagnetism. To simplify the calculations Kaplan
neglected the intra-sublattice exchange compared with the
inter-sublattice one, so that the calculations do not correspond
to any real ferrimagnet.

In the present paper I consider a two-sublattice
ferrimagnet, with spin-s1 operators S1i at the sublattice A
site and spin-s2 operators S2i at the sublattice B site. The
Hamiltonian of the system is

H = −J1

∑

〈〈i j〉〉A

S1i · S1 j − J2

∑

〈〈i j〉〉B

S2i · S2 j + J
∑

〈i j〉
S1i · S2 j

(1.1)
where the sums are over all sites of a three-dimensional cubic
lattice: 〈i, j〉 denotes the sum over the nearest neighbors,
〈〈i, j〉〉A denotes the sum over the sites of the A sublattice,
〈〈i, j〉〉B denotes the sum over the sites of the B sublattice.
The first two terms describe the ferromagnetic Heisenberg
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intra-sublattice exchange J1 > 0, J2 > 0, while the
third term describes the inter-sublattice exchange which is
antiferromagnetic J > 0.

The true magnons of a two-spin system are transversal
fluctuations of the total magnetization which includes both
the magnetization of the sublattice A and B spins. The
magnon excitation is a complicated mixture of the transversal
fluctuations of the sublattice A and B spins. As a result
the magnons’ fluctuations suppress, in different ways, the
magnetic orders on the different sublattices and one obtains
two phases. At low temperature (0, T ∗) the magnetic orders
of the A and B spins contribute to the magnetization of
the system, while at high temperature (T ∗, TN) the magnetic
order of the spins with a weaker intra-sublattice exchange
is suppressed by magnon fluctuations, and only the spins
with the stronger intra-sublattice exchange have non-zero
spontaneous magnetization. At first sight the result that there is
a temperature interval where a magnetic order is formed only
by spins on one of the sublattices seems to be counterintuitive
because the moment on the one of the sublattices builds
an effective magnetic field, which due to inter-sublattice
exchange interaction leads to a finite magnetization on the
other sublattice. This is true in the classical limit. In the
quantum case the spin-wave fluctuations suppress the A and
B magnetic orders at different temperatures T ∗ and TN as a
result of a different interaction of magnons with the sublattices’
spins. The T ∗ transition is a transition between two spin-
ordered phases in contrast to the transition from the spin-
ordered state to the disordered state (TN-transition). There is
no additional symmetry breaking and the Goldstone boson has
a ferromagnetic dispersion in both phases.

A modified spin-wave theory is developed to describe
the two phases. By means of this method of calculation the
thermal variation of magnetization is calculated for three cases:
(s1 > s2) J1 � J2, (s1 > s2) J2 � J1 and (s1 = s2) J1 � J2.
All known Neel’s anomalous M(T ) curves are reproduced
including the curve with the famous ‘compensation point’
(second case).

An important issue is the experimental detection of the T ∗
transition. In the case when T ∗ is the temperature at which
itinerant electrons start to form magnetic order the transition
demonstrates itself through the change in the T dependence
of resistivity. It is well known that the onset of magnetism
in itinerant systems is accompanied with a strong anomaly in
resistivity [8]. One expects the same phenomena when the
itinerant electrons in ferrimagnets form magnetic order. There
are experimental results which support the above interpretation
of the T ∗ transition.

The paper is organized as follows. In section 2, a
spin-wave theory of the model equation (1.1) is presented.
The non-adequacy of the customary spin-wave theory for
the description of the high temperature phase is shown.
Section 3 is devoted to the development of a modified spin-
wave theory. The calculations are accomplished for different
choices of the model’s parameters. The theoretical M(T )

curves are compared with experimental ones for sulfo-spinel
MnCr2S4−x Sex [5] and rare earth iron garnets [2] and a
satisfying coincidence is obtained. A summary in section 4
concludes the paper.

2. Spin-wave theory

To study a theory with Hamiltonian equation (1.1) it is
convenient to introduce the Holstein–Primakoff representation
for the spin operators

S+
1 j = S1

1 j + iS2
1 j =

√
2s1 − a+

j a j a j

S−
1 j = S1

1 j − iS2
1 j = a+

j

√
2s1 − a+

j a j

S3
1 j = s1 − a+

j a j

(2.1)

when the sites j are from sublattice A, and

S+
2 j = S1

2 j + iS2
2 j = −b+

j

√
2s2 − b+

j b j

S−
2 j = S1

2 j − iS2
2 j = −

√
2s2 − b+

j b j b j

S3
2 j = −s2 + b+

j b j

(2.2)

when the sites j are from sublattice B. The operators a+
j , a j

and b+
j , b j satisfy the Bose commutation relations. In terms

of the Bose operators and keeping only the quadratic terms the
effective Hamiltonian equation (1.1) adopts the form

H = s1 J1

∑

〈〈i j〉〉A

(a+
i ai + a+

j a j − a+
j ai − a+

i a j)

+ s2 J2

∑

〈〈i j〉〉B

(b+
i bi + b+

j b j − b+
j bi − b+

i b j)

+
∑

〈i j〉
[s1 Jb+

j b j + s2 Ja+
i ai − J

√
s1s2(a

+
i b+

j + ai b j)].

(2.3)

To proceed one rewrites the Hamiltonian in the momentum
space representation

H =
∑

k∈Br

[
εa

k a+
k ak + εb

k b+
k bk − γk

(
a+

k b+
k + bkak

)]
, (2.4)

where the wavevector k runs over the reduced first Brillouin
zone Br of a cubic lattice. The dispersions are given by
equalities

εa
k = 4s1 J1εk + 6s2 J

εb
k = 4s2 J2εk + 6s1 J

(2.5)

with

εk = 6 − cos(kx + ky) − cos(kx − ky) − cos(kx + kz)

− cos(kx − kz) − cos(ky + kz) − cos(ky − kz) (2.6)

and

γk = 2J
√

s1s2
(
cos kx + cos ky + cos kz

)
. (2.7)

To diagonalize the Hamiltonian one introduces new Bose
fields αk, α

+
k , βk, β

+
k by means of the transformation

ak = ukαk + vkβ
+
k a+

k = ukα
+
k + vkβk

bk = ukβk + vkα
+
k b+

k = ukβ
+
k + vkαk

(2.8)
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where the coefficients of the transformation uk and vk are real
functions of the wavevector k

uk =
√√√√√

1

2

⎛

⎝ εa
k + εb

k√
(εa

k + εb
k )

2 − 4γ 2
k

+ 1

⎞

⎠

vk = sgn(γk)

√√√√√
1

2

⎛

⎝ εa
k + εb

k√
(εa

k + εb
k )

2 − 4γ 2
k

− 1

⎞

⎠.

(2.9)

The transformed Hamiltonian adopts the form

H =
∑

k∈Br

(
Eα

k α+
k αk + Eβ

k β+
k βk + E0

k

)
, (2.10)

with new dispersions

Eα
k = 1

2

[√
(εa

k + εb
k )

2 − 4γ 2
k − εb

k + εa
k

]

Eβ

k = 1
2

[√
(εa

k + εb
k )

2 − 4γ 2
k + εb

k − εa
k

] (2.11)

and vacuum energy

E0
k = 1

2

[√
(εa

k + εb
k )

2 − 4γ 2
k − εb

k − εa
k

]
. (2.12)

For all values of k,
√

(εa
k + εb

k )
2 − 4γ 2

k � |εb
k − εa

k |, and

the dispersions are nonnegative Eα
k � 0, Eβ

k � 0.
For definiteness I choose s1 > s2. With these parameters,

the βk-boson is a gapped excitation with gap

Eβ

0 = 6J (s1 − s2), (2.13)

while the αk -boson is the long-range (magnon) excitation in
the two-spin system. Near the zero wavevector

Eα
k ≈ ρk2 (2.14)

where the spin-stiffness constant is

ρ = 8s2
1 J1 + 8s2

2 J2 + 2s1s2 J

s1 − s2
. (2.15)

The spontaneous magnetization of the system M is a sum of
the spontaneous magnetization on the two sublattices M =
MA + MB, where

MA = 〈S3
1 j 〉 j is from sublattice A

MB = 〈S3
2 j 〉 j is from sublattice B.

(2.16)

In terms of the Holstein–Primakoff bosons (ak and bk) the
magnetization adopts the form

MA = s1 − 1

N

∑

k∈Br

〈a+
k ak〉

MB = −s2 + 1

N

∑

k∈Br

〈b+
k bk〉

(2.17)

where NA = NB = N are the numbers of sites on sublattices
A and B. Finally one can rewrite MA and MB in terms of the
αk (α+

k ) and βk (β+
k ) excitations

MA = s1 − 1

N

∑

k∈Br

[
u2

k〈α+
k αk〉 + v2

k 〈βkβ
+
k 〉]

MB = −s2 + 1

N

∑

k∈Br

[
u2

k〈β+
k βk〉 + v2

k 〈αkα
+
k 〉] .

(2.18)

Then, the magnetization of the system adopts the form

M = s1 − s2 − 1

N

∑

k∈Br

[〈α+
k αk〉 − 〈β+

k βk〉
]
. (2.19)

In equations (2.18) and (2.19)

〈α+
k αk〉 = 1

eEα
k /T − 1

, 〈αkα
+
k 〉 = 1 + 〈α+

k αk〉

〈β+
k βk〉 = 1

eEβ

k /T − 1
, 〈βkβ

+
k 〉 = 1 + 〈β+

k βk〉.
(2.20)

We consider a theory with Hamiltonian equation (1.1),
where the sums are over all sites of a three-dimensional cubic
lattice with space size a = 1. The two equivalent sublattices
A and B are face centered cubic (fcc) lattices with space size
2a = 2. The coordinates kx, ky, kz of the wavevector k are
coordinates in the basis x̂, ŷ, ẑ, which are primitive vectors
of the cubic lattice. To implement the integrations over the
wavevector it is more convenient to switch to coordinates
q1, q2, q3 in the basis Â, B̂, Ĉ , which are primitive vectors of
the reciprocal lattice, to the fcc lattice with space size equal
to 2.

Â = π
(
x̂ + ŷ − ẑ

)

B̂ = π
(−x̂ + ŷ + ẑ

)

Ĉ = π
(
x̂ − ŷ + ẑ

)
.

(2.21)

To that end we utilize the transformation

kx = πq1 − πq2 + πq3

ky = πq1 + πq2 − πq3

kz = −πq1 + πq2 + πq3.

(2.22)

The Jacobian of the transformation is equal to 4π3, so that
d3k/(2π)3 = d3q/2. When the wavevector k runs over the
reduced Brillouin zone k ∈ Br, the new vector runs over the
cube 0 � ql � 1. Finally we introduce the more convenient
coordinates p1 = πq1; p2 = πq; p3 = πq3. They run over
the interval [0, π] and d3k/(2π)3 = d3 p/2π3. In terms of the
new coordinates the functions of the wavevector (2.6) and (2.7)
adopts the form

εp = 6 − cos(2p1) − cos(2p2) − cos(2p3)

− cos 2(p1 − p2) − cos 2(p1 − p3) − cos 2(p2 − p3)

γp = 2J
√

s1s2
[

cos(−p1 + p2 + p3) + cos(p1 − p2 + p3)

+ cos(p1 + p2 − p3)
]
.

(2.23)
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Figure 1. Temperature dependence of the ferromagnetic moments:
M (blue line)—the magnetization of the system, MA (green
line)—sublattice A magnetization, MB (red line)—sublattice B
magnetization for parameters s1 = 1.5, s2 = 1, J1/J = 0.47 and
J2/J = 0.005: spin-wave theory.

The magnon excitation-αk in the effective theory
equation (2.10) is a complicated mixture of the transversal
fluctuations of the A and B spins. As a result the
magnons’ fluctuations suppress in a different way the magnetic
order on sublattices A and B. Quantitatively this depends
on the coefficients uk and vk in equations (2.18). The
magnetization depends on the dimensionless temperature T/J
and dimensionless parameters s1, s2, J1/J and J2/J . For
parameters s1 = 1.5, s2 = 1, J1/J = 0.47 and J2/J =
0.005 the functions M(T/J ), MA(T/J ) and MB(T/J ) are
depicted in figure 1. The upper (green) line is the sublattice
A magnetization, the bottom (red) line is the sublattice B
magnetization and the middle (blue) line is the magnetization
of the system. The figure shows that the magnetic order
on sublattice B (red line) is suppressed first, at temperature
T ∗/J = 20. Once suppressed, the magnetic order can
not be restored at temperatures above T ∗ because of the
increasing effect of magnon fluctuations. Hence, the sublattice
B magnetization should be zero above T ∗. It is evident from
figure 1, that this is not the result within customary spin-wave
theory.

3. Modified spin-wave theory

To solve the problem we use the idea on description of
paramagnetic phase of 2D ferromagnets (T > 0) by means of
modified spin-wave theory [9, 10]. In the simplest version the
spin-wave theory is modified by introducing a new parameter
which forces the magnetization of the system to be equal to
zero in the paramagnetic phase.

We consider the two-sublattice system and force the
magnetic moments on the two sublattices to be equal to zero
in the paramagnetic phase, we also introduce two parameters
λ1 and λ2. The new Hamiltonian is obtained from the old one
adding two new terms to the Hamiltonian equation (1.1)

Ĥ = H −
∑

i∈A

λ1 S3
1i +

∑

i∈B

λ2S3
2i . (3.1)

In momentum space the new Hamiltonian adopts the form

Ĥ =
∑

k∈Br

[
ε̂a

k a+
k ak + ε̂b

k b+
k bk − γk(bkak + b+

k a+
k )

]
(3.2)

where the new dispersions are

ε̂a
k = εa

k + λ1, ε̂b
k = εb

k + λ2. (3.3)

Utilizing the same transformation equation (2.8) with
parameters

ûk =
√√√√√

1

2

⎛

⎝ ε̂a
k + ε̂b

k√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k

+ 1

⎞

⎠

v̂k = sgn(γk)

√√√√√
1

2

⎛

⎝ ε̂a
k + ε̂b

k√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k

− 1

⎞

⎠

(3.4)

one obtains the Hamiltonian in diagonal form

Ĥ =
∑

k∈Br

(
Êα

k α+
k αk + Êβ

k β+
k βk + Ê0

k

)
, (3.5)

where

Êα
k = 1

2

[√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k − ε̂b

k + ε̂a
k

]

Êβ

k = 1
2

[√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k + ε̂b

k − ε̂a
k

]

Ê0
k = 1

2

[√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k − ε̂b

k − ε̂a
k

]
.

(3.6)

We have to make some assumptions for the parameters λ1 and
λ2 to ensure the correct definition of the Bose theory. For that
purpose it is convenient to represent the parameters λ1 and λ2

in the form

λ1 = 6Js2μ1 − 6Js2, λ2 = 6Js1μ2 − 6Js1. (3.7)

In terms of the new parameters μ1 and μ2 the dispersions ε̂a
k

and ε̂b
k adopt the form

ε̂a
k = 4s1 J1εk + 6Js2μ1

ε̂b
k = 4s2 J2εk + 6Js1μ2.

(3.8)

We assume μ1 and μ2 to be positive (μ1 > 0, μ2 > 0), then
ε̂a

k > 0 and ε̂b
k > 0 for all values of the wavevector k. The Bose

theory is well defined if the square-roots in equation (3.6) are
well defined and Eα

k � 0, Eβ

k � 0. This is true if

μ1μ2 � 1. (3.9)

The βk-excitation is gapped (Eβ

k > 0) for all values of
parameters μ1 and μ2 which satisfy equation (3.9). The α-
excitation is gapped if μ1μ2 > 1, but in the particular case

μ1μ2 = 1 (3.10)

4
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Figure 2. The solution of the system of equation (3.13) μ1(T/J ),
μ2(T/J ) and μ1(T/J ). μ1(T/J ) for parameters
s1 = 1.5, s2 = 1, J1/J = 0.47 and J2/J = 0.005.

Êα
0 = 0, and near the zero wavevector

Êα
k ≈ ρ̂k2 (3.11)

with spin-stiffness constant

ρ̂ = 8(s2
2 J2μ1 + s2

1 J1μ2) + 2s1s2 J

(s1μ2 − s2μ1)
. (3.12)

In the particular case of equation (3.10) the αk -boson is the
long-range excitation (magnon) in the system.

3.1. s1 > s2 and J1 � J2

We introduced the parameters λ1 and λ2 (μ1, μ2) to force the
spontaneous magnetization on the sublattices A and B to be
equal to zero. We find the parameters μ1 and μ2, as functions
of temperature, solving the system of two equations MA = 0,
MB = 0

s1 − 1

N

∑

k∈Br

[
û2

k〈α+
k αk〉 + v̂2

k 〈βkβ
+
k 〉] = 0

−s2 + 1

N

∑

k∈Br

[
û2

k〈β+
k βk〉 + v̂2

k 〈αkα
+
k 〉] = 0

(3.13)

where the coefficients ûk and v̂k are given by equations (3.4)
and the Bose functions (2.20) are defined with dispersions Êα

k

and Êβ

k . The solutions μ1(T/J ) and μ2(T/J ) depend on
the parameters s1, s2, J1/J and J2/J . For s1 = 1.5, s2 =
1, J1/J = 0.47 and J2/J = 0.005 they are depicted in
figure 2.

The upper (red) line is μ2(T/J ), the bottom (black)
line is μ1(T/J ) and the middle (blue)line is the product
μ1(T/J ) · μ2(T/J ). The numerical calculations show that
for high enough temperature μ2 > 1, 1 > μ1 > 0 and
μ1 · μ2 > 1. Hence αk and βk excitations are gapped. When
the temperature decreases μ2 decreases remaining larger than
one, μ1 decreases as well remaining positive, and the product

Figure 3. Temperature dependence of μ for T between T ∗ and TN

and parameters s1 = 1.5, s2 = 1, J1/J = 0.47 and J2/J = 0.005.

μ1 · μ2 decreases remaining larger than one. At temperature
TN/J = 50.22 one obtains μ1 = 0.422, μ2 = 2.368 and
therefore μ1 · μ1 = 1. Hence, at TN a long-range excitation
(magnon) emerges in the spectrum which means that TN is the
Neel temperature.

Below the Neel temperature the spectrum contains
magnon excitations, thereupon μ1 · μ2 = 1. It is convenient to
set

μ1 = μ, μ2 = 1/μ. (3.14)

In the ordered phase magnon excitations are the origin of
suppression of the magnetization. Near zero temperature their
contribution is small and at zero temperature they are close
to s1 and s2. Increasing the temperature magnon fluctuations
suppress the magnetization. For the chosen parameters they
first suppress the sublattice B magnetization at T ∗ (MA(T ∗) >

0). Once suppressed, the magnetic moment of sublattice B
spins can not be restored by increasing the temperature above
T ∗. To formulate this mathematically, we modify the spin-
wave theory introducing the parameter μ equation (3.14).
Below T ∗ μ = 1, or in terms of λ parameters λ1 =
λ2 = 0, which reproduces the customary spin-wave theory.
Increasing the temperature above T ∗ the magnetic moment of
the sublattice B spins should be zero. This is why we impose
the condition MB(T ) = 0 if T > T ∗. For temperatures
above T ∗ the parameter μ is a solution of this equation.
The function μ(T/J ) is depicted in figure 3. Increasing the
temperature above T ∗, μ(T/J ) decreases from μ(T ∗/J ) = 1
to μ(TN/J ) = μ1(TN/J ) = 0.422.

Next, one utilizes the so obtained function μ(T/J ) to
calculate the sublattice A magnetization as a function of the
temperature. Above T ∗, MA is equal to the magnetization of
the system. The magnetic moments of the sublattice A and B
spins, as well as the magnetization of the system, as a function
of the temperature are depicted in figure 4 for parameters
s1 = 1.5, s2 = 1, J1/J = 0.47, J2/J = 0.005.

To compare the theoretical results and the experimental
M(T ) curves one has, first of all, to interpret adequately the
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Figure 4. Temperature dependence of the ordered moments:
M (blue line)—the magnetic moment of the system, MA (green
line)—sublattice A magnetic moment, MB (red line)—sublattice B
magnetic moment for parameters s1 = 1.5, s2 = 1, J1/J = 0.47 and
J2/J = 0.005: modified spin-wave theory.

measurements. The magnetic moments in some materials are
close to the ‘spin only’ value 2 μBS and the sublattice spins
s1 and s2 can be obtained from the experimental curves. I
consider the system MnCr2S4−x Sex . It has been investigated
by measurements of the magnetization at 15.3 kOe as a
function of temperature (figure 94 in [5]). The maximum in
the magnetization versus temperature curve, which is typical of
MnCr2S4 (x = 0), increases when x increases, and disappears
at x = 0.5. The Neel temperature decreases from 74 K at
x = 0 to 56 K at x = 2. The authors’ conclusion is that
the observed change of the magnetic properties is attributed
to a decrease of the strength of the negative Mn2+–Cr3+
superexchange interaction with increasing Se concentration.

As follows from the present theory (see figure 4 middle
blue line) the maximum of the magnetization is at T ∗.
Above T ∗ the magnetization of the system is equal to the
magnetization of sublattice A spins. If we extrapolate this
curve below T ∗ down to zero temperature we will obtain a
value close to 2s1 μB, where s1 is the spin of the sublattice
A spin operators. The figure shows that extrapolations give
one and the same result for all values of x . One can accept the
fact that the Se concentration does not influence the value of
sublattice A spin and s1 = 1.5.

Below T ∗ the magnetization is a sum of the sublattice
A and B magnetization. Hence, the magnetization at zero
temperature is equal to 2(s1 − s2) μB. Therefore, one can
determine the sublattice B spin s2. The important conclusion is
that the effective sublattice B spin s2 decreases with increasing
Se concentration. The dimensionless magnetization (in Bohr
magnetons) per lattice site σ = 2(MA + MB) is calculated for
s1 = 1.5, J1/J = 0.47, J2/J = 0.005 and s2 = 1; 0.7; 0.4.
The curves are depicted in figure 5. The figure shows that
the present calculations capture the essential features of the
system; increasing the Se concentration (decreasing s2) leads to
a decrease of Neel temperature, the T ∗ temperature decreases
too, and the maximum of the magnetization σ(T ∗) increases.

Figure 5. The magnetization, in Bohr magnetons, per lattice site
σ = 2(MA + MB) for s1 = 1.5, J1/J = 0.47, J2/J = 0.005 and
s2 = 1; 0.7; 0.4.

3.2. s1 > s2 and J2 � J1

Next I consider the case when the sublattice A spin s1 is
larger then the sublattice B spin s2 but the intra-sublattice
exchange constant J1 is much smaller than the intra-sublattice
B exchange constant J2. Increasing the temperature, the
magnon fluctuations suppress the magnetic order and the
sublattice A magnetization decreases faster than the sublattice
B magnetization. There is a temperature Tc at which the
magnetization of the system is zero M(Tc) = 0 (the
compensation point). Increasing the temperature above Tc the
sublattice A magnetization becomes equal to zero at T ∗. Above
this temperature the sublattice A magnetization should be kept
equal to zero and one utilizes the modified spin-wave theory
to calculate the magnetization of the system which is equal
to the sublattice B magnetization. The magnetization curves
MA(T/J ), MB(T/J ) and M(T/J ) are depicted in figure 6
for parameters s1 = 18, s2 = 3, j1 = J1/J = 0.005 and
j2 = J2/J = 1.

To compare the theoretical results with experimental ones
I address the magnetization–temperature curves of rare earth
iron garnets.When a rare earth ion, such as Gd3+ through Yb3+,
is present instead of a diamagnetic ion, such as Y3+ in Yttrium
Iron Garnet, it is found that the magnetization as a function of
temperature shows compensation points, i.e. the temperatures
at which the spontaneous magnetization is zero (figure 5 [2]).
I use the ‘spin only’ value for the magnetization, and the
sublattices’ spins are considered as effective parameters to be
determined from the experimental curves. The magnetization,
in Bohr magnetons, per lattice site σ = 2|MA + MB| are
depicted in the figures. T ∗ is the temperature at which the
sublattice A magnetization becomes equal to zero (black line
figure 6), and hence the magnetization is minimal (blue line
figure 6); in the case of the σ(T ) curves T ∗ is the temperature,
above the compensation point, at which σ(T ∗) is maximal.
The magnetization above T ∗ is equal to the sublattice B
magnetization. To assess the value of the sublattice B spin s2,
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Figure 6. The magnetization curves: MA(T/J )—upper (green) line,
MB(T/J )—bottom (red) line, M(T/J )—middle (blue) line for
parameters s1 = 18, s2 = 3, j1 = J1/J = 0.005 and j2 = J2/J = 1:
modified spin-wave theory.

one has to extrapolate the curve to zero temperature. Then
the spin s1 can be obtained from the zero temperature of the
magnetization 2(s1 − s2)μB. The experimental curves (figure 5
[2]) show that the value of σ(T ∗) is different for different
rare earth ions, and hence the effective spin s2 is different for
different rare earths. It is smaller for gadolinium, increases for
terbium, dysprosium, holmium, and is higher for ytterbium.
At the same time the temperature T ∗ decreases, which means
that sublattice B intra-exchange constant J2 decreases. The
magnetization σ = 2|MA + MB| for two choices of the
parameters are depicted in figure 7: black squares— s1 =
18, s2 = 3, j1 = J1/J = 0.005, j2 = J2/J = 1 and red
circles— s1 = 18, s2 = 6, j1 = J1/J = −0.05, j2 = J2/J =
0.15. The negative sign of J1 in the second group of parameters
is chosen to reproduce the shape of the experimental curves.
One can do better fitting, with positive constants J2 for all rare
earths, accounting for magnon scattering processes.

3.3. s1 = s2 and J1 � J2

Finally I consider a theory with parameters s1 = s2 =
s and J1 � J2. It is more correct to think of this
case as a generalization of antiferromagnetism. The system
has two magnons with dispersions Eα

k and Eβ

k . Near the
zero wavevector the dispersions’ asymptotic is as in the
antiferromagnetic case

Eα
k ≈ vs |k|, Eβ

k ≈ vs |k| (3.15)

with spin-wave velocity

vs = 2s
√

12J1 J + 12J2 J + 3J 2. (3.16)

As a result, at zero temperature, and near the zero
temperature, one observes a compensation of sublattice A and
B magnetization and the magnetization of the system is zero.
The difference of the dispersions is

Eα
k − Eβ

k = 4s(J1 − J2)εk ≈ 8s(J1 − J2)k2, (3.17)

Figure 7. The magnetization σ = 2|MA + MB| as a function of
T/J : black squares— s1 = 18, s2 = 3, J1/J = 0.005, J2/J = 1,
red circles— s1 = 18, s2 = 6, J1/J = −0.05, J2/J = 0.15.

Figure 8. The magnetization curves: MA(T/J )—green squares,
MB(T/J )—red circles, M(T/J )—blue triangles for parameters
s1 = 1, s2 = 1, J1/J = 0.47 and J2/J = 0.005: modified
spin-wave theory.

therefore increasing the temperature one obtains non-
compensation of sublattice A and B magnetization. The
magnon fluctuations first suppress the sublattice B magnetiza-
tion at temperature T ∗. Above this temperature only sublattice
A contributes to the magnetization. The magnetization curves
MA(T/J ), MB(T/J ) and M(T/J ) are depicted in figure 8 for
parameters s1 = 1, s2 = 1, J1/J = 0.47 and J2/J = 0.005.
The magnetization–temperature curve (blue triangles) repro-
duces Neel’s anomaly.

4. Summary

In summary, I have calculated the magnetization as a function
of temperature for two-sublattice ferrimagnet. The anomalous
temperature dependence of the magnetization, predicted by
Neel, is reproduced, and the shape of the theoretical curves
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satisfactorily coincides with the experimental ones. The
most important difference between Neel’s theory and the
present modified spin-wave theory is that Neel’s calculations
predict a temperature TN at which both the sublattice A
and B magnetizations become equal to zero. The modified
spin-wave theory predicts two phases: at low temperatures
(0, T ∗) the magnetic orders of the two sublattices contribute
to the magnetization of the system, while at high temperatures
(T ∗, TN) only one of the sublattices, that with a stronger intra-
sublattice exchange, has non-zero spontaneous magnetization.
It is important to stress that despite the fact that only one of the
spins contributes to the magnetic order at high temperatures
T ∗ < T < TN this is not a ferromagnetic phase. This is
a ferrimagnetic phase because the magnon of the system is a
mixture of the transversal fluctuations of the two spins.

Two ferromagnetic phases were theoretically predicted,
very recently, in spin-Fermion systems, which obtain their
magnetic properties from a system of localized magnetic
moments being coupled to conducting electrons [11]. At
the characteristic temperature T ∗, the magnetization of
itinerant electrons becomes zero, and the high temperature
ferromagnetic phase (T ∗ < T < TC) is a phase where only
localized electrons give a contribution to the magnetization
of the system. An anomalous increase of magnetization
below T ∗ is obtained in good agreement with experimental
measurements of the ferromagnetic phase of UGe2 [12]. The
results of the present paper and the previous one [11] suggest
that the T ∗ transition from a magnetic phase to another
magnetic phase is a generic feature of the two-spin systems.
The additional phase transition demonstrates itself through
the anomalous temperature variation of the spontaneous
magnetization. Another way is possible, to experimentally
identify the transition, if T ∗ is the temperature at which the
itinerant electrons in the system start to form a magnetic
moment. We know from itinerant ferromagnetism that the
transition is observed through the change in the temperature
dependence of resistivity. The most prominent example is
the spinel Fe3O4. It has been extensively investigated and
the most striking feature is the Verwey transition [13]. At a
relatively low temperature TV = 100–120 K the magnetization
abruptly changes slope, and the conductivity has an anomalous
behavior. Many decades of research on Fe3O4 have led to
the view [14–16] that the spinel is a two-sublattice system
with three spins. The Fe3+

A and Fe3+
B ions are associated with

localized spins on sublattices A and B, while Fe2+
B ions are

associated with itinerant electrons on sublattice B. With this
in mind one can interpret the Neel temperature TN as the
temperature at which the magnetic moment of Fe3+

B ions sets
in, while the Verwey temperature TV is the temperature at
which the magnetic moment of Fe3+

A ions sets in. There are
two phases: a low temperature phase where Fe3+

A and Fe3+
B

ions contribute to the magnetization and a high temperature
phase where only Fe3+

B ions contribute to the magnetization.
The itinerant electrons interact with the localized spins, which
leads to a renormalization of the hopping parameter. The
renormalization is different at low and high temperatures
because it depends on the orientation of the magnetic orders.
As a result the transport properties are different at high and
low temperatures.

Another example is the manganese vanadium oxide spinel
MnV2O4 [17]. The A site of the spinel is occupied by the Mn2+
ion, which is in the 3d5 high-spin configuration with quenched
orbital angular momentum, which can be regarded as a simple
s = 5/2 spin. The B site is occupied by the V 3+ ion, which
takes the 3d2 high-spin configuration in the triply degenerate
t2g orbital, and has orbital degrees of freedom. Because of the
strong spin–orbital interaction it is convenient to consider j j
coupling with JA = SA and JB = LB + SB. The sublattice
A total angular momentum is jA = sA = 5/2, while the
sublattice B total angular momentum is jB = lB + sB with
lB = 1 and sB = 3/2. Finally, the g-factor for the sublattice A
is gA = 2, and the atomic value of the gB is gB = 1.6. Then,
the zero temperature value of the magnetization is σ(0) =
2 5

2 − 1.6 5
2 .

The measurements of the magnetization as a function of
temperature [17–19] show that the set in of magnetic order is
due to Mn localized electrons at the Neel temperature TN =
56 K [17]. The vanadium electrons start to form magnetic
moments at T ∗ = 48 K. An evidence for this is the abrupt
decrease of magnetization below T ∗, which also indicates that
the magnetic order of vanadium electrons is antiparallel with
the order of Mn electrons. When the temperature approaches
zero the magnetization goes to zero too, which indicates that
the real value of gB is not the atomic one but gB ≈ 2. The
deviation is due to the anisotropy which increases the gB-factor.

The above analysis concerns the ZFC magnetization. For
samples cooled in a field (FC magnetization) the field leads
to formation of a single domain and, in addition, increases
the chaotic order of the spontaneous magnetization of the
vanadium electrons, which is antiparallel to it. As a result the
average value of the vanadium magnetic order decreases and
does not compensate the Mn magnetic order (σ(0) 	= 0). The
magnetization curves depend on the applied field, and does not
go to zero. For a larger field the (FC) curve increases when
the temperature decreases below the Neel temperature. It has
a maximum at the same temperature T ∗ < TN and, what is
the difference, it has a minimum at T ∗

1 < T ∗. Below T ∗
1 the

magnetization increases monotonically when the temperature
approaches zero. As in the ZFC case, T ∗ is the temperature
at which the vanadium electrons start to form magnetic order.
Now, because of the strong field, the vanadium bands are split
and part of the magnetic orders are reoriented to be parallel
to the field and magnetic order of the Mn electrons. As a
result, when T ∗

1 < T < T ∗ only one of the vanadium electron
has non-zero spontaneous magnetization, antiparallel to the
magnetic order of Mn electrons. Below T ∗

1 the reoriented
magnetic orders set in, which explains the increase of the
magnetization when the temperature approaches zero1. The
description of this case is more complicated and requires three
magnetic orders to be involved.

The present theory of ferrimagnetism permits the
formulation of phenomenological rules which enable the
analysis of experimental results for more complicated systems
without explicit calculations. For example, the three-spin
systems have, most generally, three characteristic temperatures

1 When the field is so strong that all vanadium electrons are reoriented, an
anomalous increase of magnetization below T ∗ would be obtained.
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T ∗
1 < T ∗

2 < TN. The Neel temperature TN is the temperature
at which the magnetic order sets in. When T ∗

2 < T < TN only
one of the spins has non-zero spontaneous magnetization and
the magnetization of the system equals the magnetic order of
that spin. When T ∗

1 < T < T ∗
2 two of the spins contribute

to the magnetization of the system. If M(T ∗
2 ) is the local

maximum the two spins are antiparallel. If the magnetization
shows an anomalous enhancement below T ∗

2 the two spins are
parallel. Below T ∗

1 all three spins have non-zero spontaneous
magnetization, and the magnetization changes slope at this
temperature.

As an example I consider the CeCrSb3 compound [20].
The magnetic behavior is determined by Cr ions and Ce-4f
electrons, which are located in different sublattices. The strong
anisotropy leads to different curves of magnetization along
different axes. The measurements of the magnetization and
electric resistivity on a single crystal of CeCrSb3 along the
c axis show that there are three characteristic temperatures,
the Neel temperature TN = 115 K, T ∗

2 = 108 K, at which
the magnetization is maximal, and T ∗

1 = 18 K, at which
the magnetization is minimal. The closeness of TN and T ∗

2
leads to misinterpretation and even to misidentification of
these temperatures, but an evident increase of magnetization
when T ∗

2 < T < TN and subsequent decrease below T ∗
2

proves that there are three characteristic temperatures. Below
T ∗

1 the magnetization increases again. The experimental
results suggest that there are three magnetic orders. Part
of the itinerant Cr electrons start to form magnetic order
at the Neel temperature TN and the rest at T ∗

1 , while the
localized Ce-4f electrons do this at T ∗

2 (T ∗
2 = TCe). The

field cooled magnetization curves depends on the field. An
increasing field leads to an increase of the maximal value of
the magnetization and to an increase of the zero temperature
value of the magnetization. This shows that the applied
field is parallel to the magnetic orders of chromium electrons.
Finally, the temperature variation of the resistivity shows
anomalous behavior at TN and T ∗

1 . It is known [8] that the
onset of magnetism in the itinerant systems is accompanied
by a strong anomaly in resistivity. Hence, one can associate

these temperatures with the temperatures at which the itinerant
chromium electrons start to form magnetic order.
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